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In this paper, we consider the use of blind deconvolution for optoacoustic (photoacoustic) ima-
ging and investigate the performance of the method as means for increasing the resolution of the
reconstructed image beyond the physical restrictions of the system. The method is demonstrated
with optoacoustic measurement obtained from six-day-old mice, imaged in the near-infrared
using a broadband hydrophone in a circular scanning con¯guration. We ¯nd that estimates of the
unknown point spread function, achieved by blind deconvolution, improve the resolution and
contrast in the images and show promise for enhancing optoacoustic images.

Keywords: Optoacoustic; photoacoustic; tomography; multispectral; blind deconvolution; inter-
polated-model-matrix inversion (IMMI).

Optoacoustic tomography, also termed photo-
acoustic tomography, o®ers high-resolution map-
ping of intrinsic absorption and exogenous contrast
agents in tissues.1�6 Imaging is performed by illu-
minating the object or region of interest with short
high-energy (1�100mJ) laser pulses, thus creating
an instantaneous temperature elevation and a cor-
responding local thermal expansion of tissue, at
areas of light absorption. As a result, broadband
ultrasonic waves are generated (typically in the
0.1�10MHz range) that convey information on the
local light energy deposition. Collecting tomo-
graphically the generated ultrasonic waves around
the object and using optoacoustic inversion
schemes, the source distribution can be recon-
structed as an image representing local laser energy
absorption within the object.

In contrast to conventional ultrasound imaging,
attaining relatively low contrast between di®erent
soft tissues, optoacoustic tomography visualizes
the optical contrast, which is signi¯cantly richer in
distinguishing di®erent tissues and biomarkers,
including oxygenated and deoxygenated forms of
hemoglobin or endogenously or extrinsically admi-
nistered absorbers. Additionally, due to weak scat-
tering of ultrasonic waves in biological tissues, the
resolution is similar to that achieved with ultra-
sonography, i.e., it can reach 20�200�m depending
on the penetration depth and corresponding fre-
quency spectrum used. By combining rich optical
contrast with ultrasonic di®raction-limited resol-
ution, optoacoustics holds a great promise to become
the method of choice in a variety of small animal and
clinical imaging applications.7�9 Detection and
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visualization of spectrally distinct intrinsic tissue
contrast and exogenous agents can be facilitated by
acquiring optoacoustic data at multiple wavelengths
and applying spectral processing and reconstruction
algorithms.10,11 By increasing the number of detec-
tion elements, it is also possible to build tomo-
graphic12 and microscopic systems,13,14 which are
able to scan objects in real time. Real-time optoa-
coustic tomographs are able to provide direct insight
into biological processes such as kidney perfusion12 or
cardiovascular dynamics.15 Of particular interest is
the development ofmultispectral optical tomography
(MSOT),10,16,17 which provides the capability to
accurately resolve and quantify the volumetric bio-
distribution of molecular probes and tissue bio-
markers. The method utilizes illumination at several
wavelengths and this information is used to quanti-
tatively resolve the spectra of various tissue mol-
ecules. An additional advantage of MSOT is that the
separation of a molecular probe from background can
be achieved in the absence of background measure-
ments, i.e., there is no need to obtain data before
probe administration.17 This is useful for most mol-
ecular probes, which require some considerable time
to deliver and localize at an intended target, typically
1 h or more. The information contained at multiple
wavelengths is also employed to improve the accuracy
of the reconstructed images as a function of depth and
inhomogeneous light distribution.17

Despite advantages, the quality of optoacoustic
images can be compromised by the convolution of
the point-spread function (PSF) of the system with
the underlying absorption image; a process typical
of the imaging process. The PSF of a system can be
generally experimentally measured by imaging an
object of physical dimensions that are much smaller
than the resolution of the imaging system. There are
cases, where PSF is not provided for a system, even
though there is a need to deconvolve the image to
increase the quality of the reconstruction. Therefore
we investigate the performance of blind deconvolu-
tion (BD) for optoacoustic tomography, which
allows resolution improvements by at least partially
improving on image \blurring"; typical of a con-
volution process. BD is a well-studied method in
image processing and applied mathematics.18�21

While in regular deconvolution the PSF is exactly
measured and then used to recover the original
image (unblur), BD estimates the PSF from the
image or image set of interest. This method has
already shown e±ciency in medical imaging, for

example in MRI,22 SPECT23 or ultrasound24 ima-
ges. It has been also considered in astronomy to
improve images aquired by telescopes25 or in mi-
croscopy to increase the image resolution beyond
the limitations of the hardware.26,27 In contrast to
classical ¯ltered back-projection algorithms,28

which have in general an inferior signal-to-noise
ratio (SNR) compared to IMMI,29 we present the
performance of BD on IMMI reconstructed ex vivo
mouse images for optoacoustic data.

Generally in the ¯eld of image processing a
blurred image g can be expressed as

g ¼ h� f; ð1Þ
where f is the original image, � is the convolution
operator and h is a non-negative blur kernel of size
that is small compared to the image size. Assuming
the presence of a noise component n, Eq. (1) can be
rewritten as

g ¼ h� f þ n: ð2Þ
It is assumed that f and n are uncorrelated
with covariance matrices Mf and Mn and that
the additive noise is white, so Mn ¼ �2

nI where I is
the identity matrix. The challenge for BD is to
estimate the unknown parameter h. To ¯nd this, a
maximum likelihood estimate can be obtained.30

The decomposition of image g is an ill-posed pro-
blem, because there exists an in¯nite number of
solution pairs of h and f, which could give math-
ematically correct results. A unique solution may be
obtained by making additional assumptions on the
blur kernel.30 For example, an estimate of the blur
kernel can be used to reduce the result space. In our
experiments we used an iterative algorithm, which
was developed by Fish et al. and is discussed in
detail in Ref. 31. Brie°y the BD is based on the
Lucy�Richardson (LR) deconvolution, which is
itself an iterative algorithm. In each BD iteration,
two LR deconvolution iterations are performed —

one for an image evaluation and one for a PSF
evaluation.31 To stop the iterative BD algorithm,
stop criteria must be introduced. In our case the
iterative algorithms stops by under-running a cer-
tain error for two successively calculated iterations.
The error is calculated by the root mean square
(rms) error estimate for an entire image, which is
de¯ned by

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR R jfi�1 � fij2dxdyR R jfi�1j2dxdy

s
; ð3Þ
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where f is the deconvolved image for a certain iter-
ation i. The integration of Eq. (3) is performed over
the entire image. Figure 1 depicts the performance
of this approach using simulated images and 10

iteration steps. The initial PSF estimate was
de¯ned by a small matrix of 7� 7, each element in
the matrix having a value of one. Figure 1(a)
depicts the original image, Fig. 1(b) the blurred

(a) (b)

(c) (d)

(e)

Fig. 1. (a) Undistorted image; (b) blurred image; (c) PSF which was used to get image (b); (d) recovered image after the blind
deconvolution; and (e) recovered PSF.
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image, Fig. 1(c) depicts the PSF assumed for the
system, employed in image blurring (convolution),
Fig. 1(d) shows the deconvolved image and Fig. 1(e)
depicts the recovered PSF. As seen on Fig. 1(d), a
marked resolution improvement is achieved after
the application of BD, despite signi¯cant blurring of
the image in Fig. 1(b).

To evaluate the performance of BD, we applied it
to numerically simulated and experimentally
acquired optoacoustic images, which were recon-
structed by the recently published IMMI algor-
ithm.32 Assuming short laser pulses (<1�sec), the
heat-con¯nement condition is ful¯lled.1 This means
that the acoustic signal generated is proportional to
the absorbed optical energy. Under this condition,
and neglecting acoustic losses, the propagation
equation for the acoustic ¯elds is given by33:

r2pð~r; tÞ � 1

c2s

@ 2

@t2
pð~r; tÞ ¼ �

@Hðr; tÞ
@t

; ð4Þ

where cs is the speed of sound in the medium, p is
the pressure at time t at position r, � is the Grü-
neisen parameter, and H is the amount of energy
absorbed in the tissue per unit volume and per unit
time. In most practical cases, this equation can be
directly inverted, i.e.32,33:

pðr; tÞ ¼ �

4�c

@

@t

Z
R¼ ct

Hrðr 0Þ
R

dA 0; ð5Þ

where R ¼ r� r 0 and the integration is performed
over a sphere with a radius of R ¼ ct. In a two-
dimensional (2D) geometry, for which all the sour-
ces lie in a plane, the integration can be performed
over a circle. Then the unknown HrðrÞ distribution
can be reconstructed by inversion of Eq. (5) and
denotes the amount of photon absorption at each
position r. The inversion can be performed using
analytical solutions, such as back-projection algor-
ithms, or model-based solutions that solve Eq. (5)
numerically. In IMMI,32,34 Eq. (5) is solved by
applying linear interpolation to HrðrÞ and per-
forming the integral analytically. This leads to a
discretization of Eq. (5), given by the following
matrix relation

p ¼ Mz; ð6Þ
where p is a column vector representing the acoustic
¯elds measured at a position (projection) r, for a set
of times ftigði ¼ 1; . . . ; IÞ : pi ¼ pðr;tiÞ; z is a column
vector representing the values of the optoacoustic

image on the grid zj ¼ HðrjÞðj ¼ 1; . . . ;JÞ; andM is
the acoustic forward-model matrix for a detector
at r. Then, two common methods for inverting
Eq. (6) are the Moore�Penrose pseudo-inverse35

and the LSQR (least squares QR decomposition)
algorithm.36 The pseudo-inverse of M is given by

Mþ ¼ ðMHMÞ�1MH ; ð7Þ
where MH is the Hermitian transpose of M. After
the pseudo-inverse is calculated, the reconstructed
optoacoustic image can then be readily obtained by:

z ¼ Mþp: ð8Þ
The pseudo-inverse of a matrix corresponding to a
given imaging system needs to be calculated only
once; in this case the inversion can be performed fast,
within milliseconds.

The second alternative considered, LSQR, is an
iterative algorithm for solving linear equations.36

Analytically, LSQR is identical to the conjugate
gradient method. However, numerically LSQR was
found to be more stable. LSQR is highly e±cient
when applied to sparse matrices. LSQR operations
require that only the non-zero elements of the
matrix are saved in memory, thus mitigating
memory requirements. Since the model matrix M is
sparse when the number of grid points (resolution)
is high,32 LSQR is an appropriate method for
inverting Eq. (6).

In the next step we demonstrate the performance
of BD for numerical simulated optoacoustic phan-
toms. In general an optoacoustic image HrðrÞ rep-
resents the total amount of optical energy
transferred to the imaged object from a single light
pulse at a point r, which can be described by

HðrÞ ¼ �aðrÞUðrÞ; ð9Þ
where �aðrÞ is the absorption coe±cient and UðrÞ is
the light °uence. To model the light °uence for our
experiments, we assumed di®usion approximation
to light transport equation,37 i.e.,

�rDð~rÞrUð~rÞ þ �að~rÞUð~rÞ ¼ q0; ð10Þ
whereD ¼ 1=½3ð� 0

s þ �aÞ� is the spatially dependent
di®usion coe±cient of the medium, U is the light
intensity, �a is the optical absorption coe±cient, � 0

s

is the reduced scattering coe±cient and q0 is the
source term. When the exterior medium is non-
scattering, the behavior of UðrÞ on the interface is
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given by the Robin boundary condition38:

Uð~rÞ þ 2Dð~rÞn̂ � r � Uð~rÞ ¼ 0; ~r 2 @�; ð11Þ
where @� is the boundary of the object and n̂ is a
unit vector normal to @� and pointing outward.
Clearly, for heterogeneous media, solutions for
Eq. (10) can only be obtained numerically. In our
work, we used a ¯nite volume method (FVM) sol-
ution approach.39 After computing the optoacoustic
source distribution with Eq. (9), we simulated the
optoacoustic signals by using Eqs. (5) and (6).

All the algorithms were implemented in Matlab
(Mathworks Inc., Natick, MA, USA), and executed
on an Intelr CoreTM2 Quad Processor CPU oper-
ating at 2.67GHz with 4Gb of RAM. All the model-
based reconstructions were obtained using LSQR
for inversion.

We numerically tested the performance for a
round tissue-mimicking phantom containing several
inclusions with higher absorption compared to the
background. To the bulk of the phantom was
assigned an absorption coe±cient of �a ¼ 0:2 cm�1,
whereas the insertions had absorption coe±cients
of 2 cm�1. The scattering coe±cient was chosen to
be constant and had the value of 10 cm�1. We
computed the simulated acoustic signals by using the
forward solution of IMMI, assuming constant and
uniform surface illumination and circular detection
geometry with 360 projections. To reconstruct
the numerical phantom signals we used IMMI for
180 projections (Fig. 2(a)). Figure 2(b) shows the

blurred version of Fig. 2(a), where the PSF of
Fig. 2(c) was used.40 As stop criteria we de¯ned a
maximum allowed error of 5.0e-004, which was
reached after 18 iterations. As expected, BD
improved the optoacoustic image (marked by
arrows) and shown in Fig. 2(d) and gave a good
estimation for the PSF we used to distort the image.

For the investigation of the performance of BD on
experimental data, we employed a ¯rst-generation
single detector MSOT system described in detail in
Ref. 41. In brief, the experimental setup employed
(Fig. 3) rotates the object of interest in front of a
7.5MHz ultrasonic transducer (Model V320, Pana-
metrics-NDT, Waltham, MA, USA) to obtain 360�
tomographic scans of the generated optoacoustic
response. The excitation wavelength employed for
the measurements herein was 650 nm, obtained from
a nanosecond Optical Parametric Oscillator (OPO)
Spectra Physics laser. Measurements from the heads
of six-day-old mice were captured post-mortem at
three-degree steps. In order to improve SNR of the
signals, each projection was obtained by averaging
32 independent measurements, resulting in 32�
120 ¼ 3840 measurements which were acquired in
approximately 10min. The model matrix, which was
subsequently inverted, consisted of 90;000�381; 900
elements corresponding to a reconstructed image of
300� 300 pixels, of approximately 64-micron resol-
ution. Figure 4(a) shows the reconstructed image by
IMMI and Fig. 4(b) the result of the BD. Despite the
complexity of the images, compared to the sample

(a) (b)

Fig. 2. (a) Unblurred optoacoustic image; (b) blurred optoacoustic image; (c) PSF used to blur image (a); (d) recovered image
using BD; and (e) recovered PSF.

Performance of Blind Deconvolution in Optoacoustic Tomography 389

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
1.

04
:3

85
-3

93
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
10

/2
4/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



(c) (d)

(e)

Fig. 2. (Continued)

Fig. 3. Sketch of the optoacoustic setup used.
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images in Figs. 1 and 2, the deconvolved image
depicts an improvement, manifested as sharpness
and corresponding contrast betterment. This is
shown in detail for both images for the regionmarked
with an arrow. Here we can see in the uncorrected
image that the absorbing structure close to the eye
socket is blurry and the borders are not well de¯ned.
However, in the deconvolved image the blurring is
reduced and the structure is better de¯ned.

BD for experimental data has generally a lower
performance compared to simulated data, which is
related to the spatial dependency of the PSF of
acoustic detectors. In our experiments we assumed
an invariant PSF for the optoacoustic image. This is
true as long as themeasured object is small enough to
stay in the focus of the transducer, because there the
spatial dependency of the PSF is minimal.42,43

Nevertheless we have shown the application of BD in
IMMI-reconstructed optoacoustic images,32 demon-
strated on simulated phantoms and experimental
datasets from themouse head. Themethod increased
the resolution of the optoacoustic image, subjectively
evaluated by image observation. This is achieved by
using an iterative BD algorithm, which estimates the
PSF of an optoacoustic system. For a successful
application of the method it is important to have
good quality images, i.e., images that preserve as best
as possible spatial frequency components and con-
tain as few artifacts as possible. Such necessary image
quality was provided herein by the recently pub-
lished IMMI inversion method.32 Conversely, tra-
ditional inversion schemes, such as back-projection,
introduce many artifacts in the reconstructed
image,29 so the blur kernel cannot be su±ciently
estimated. In this study we used a straightforward
implementation of the BD algorithm, so it still holds

potential for optimizations. BD can be useful in
di®erent implementations of optoacoustic imaging,
including mesoscopy and microscopy
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